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Abstract-In this p<lper. the sc<lllering of slow flexural waves by arbitrary shaped cavities in an
infinite e1astie plate is studied using a com!lined tinite element and analytical method. The problem
is considered as consisting 1)1' tWI) interacting systems. a !lounded interior region containing all
111'lterial and geometric irregularitIes. and an un!lounded exterior region. The interior region is
n1\ldelled by using Mindlin type plate !>cnding elements. Wave function expansion is used to
represent the exterior region. Continuity of displaccments and tractions are enforced at the nodcs
on thc linite elcment interface with the exterior rcgion, Comparison of prescnt results for circular
cavity with the analytical solution shows cxcellent agrecment. Finally, scattering by triangular and
s4uare shaped cavitics as well as <I pair of circular cavities is considered.

INTRODUCTION

In an isotropic. inlinite elastic medium. two types of waves (P and S) propagate. but in a
plate in th:XlIrC entirely dilrerent types of waves propagate. The scattering by an obstacle
of an elastic wave propagating in an infinite medium has been widely studied by Pao and
Mow (1913). However. except for the contribution of Pao and Chao (1964). no other study
has been reported 011 the sc,lttering problem of Ilexural w,lves in a plate.

Three types of waves can propagate in an isotropic clastic plate in t1exure based on
Mindlin theory; slow llexural. fast tlexural and thickness shear waves. Pao and Chao (1964)
studied the scattering of slow Ilexural waves in an isotropic inllnite clastic plate by the wave
function expansion ml.:thod. In thcir trcatllll.:nt. both the incident and scattered fields 'Ire
cxpalllb.l in Fouril.:r Ikssd series. For a cylindrical inclusion having circular cross-section.
thl.:y evaluated the scatlt:n:d wave fidd by satisfying the boundary conditions prescribed
over the surfacl.: of the inclusion. However. the boundary conditions for a scatterer h<lving
<lrbitrary cross-section cannot be s<ltislled which is the limitation of the an<llytical approach.

The Illethod of wave function expansion h"s also been used to study sC<lttering ofclastic
waves in two- and three-dimensional problems. P<lO and Mow (1973) give a comprehensive
coverage of this subject. The limitation of this method. as noted above. is its inability to
satisfy the boundary conditions over the scatterer-host medium interface when the scatterer
has arbitr<lry cross-section.

Problems involving arbitrary geometric configurations arc more ammenable to numeri­
cal methods such as tinite elements and linite differences. An obvious shortcoming of such
schemes is that the domain. which is usually infinite for the class of problems under
consideration. has to be modelled by a finite-sized model. Attempts have been made (Lysmer
and Kuhlemeyer. 1969; Smith. 1974; Kausel et al.• 1975; Chow and Smith. 1981; Medina
and Taylor. 1983; Lee and Dasgupta. 1984) to reduce the error stemming from the use of
finite-sized model by prescribing "ppropriate boundary conditions to be used along the
boundary of the finite computational domain. By and large. they are either approximate in
nature or work best at certain angles of incidence. Similar attempts for transient wave
propagation has been reported (Engquist and Majda. 1977; Higden. 1986. 1987). Recently
Ting and Miksis (1986) proposed a scheme to generate the exact boundary data but a
numerical implementation and a comparison of accuracy of their scheme is yet to be
reported.
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Fig. I. Geometry of the problem.

The present authors used a numerical technique combining the wave function expan­
sion procedure with the finite element method to study this class of problems. The success
of this technique has been reported earlier (Shah c/ a/.. 1982a.b; Datta c/ al.• 1982; Datta
and Shah. 1982; Abduljabbar e/ a/.. 19R3; Shah e( a/.. Ins: Shah e( a/.. IWi7:
Paskaramoorthy <,I a/.. 19XX). In these studies. the general str.ltI.:gy was to draw a fictitious
houndary B (Fig. I) cnclosing thc scattercr. Thc region interior to this houndary (referred
to as "interior region" in the following) which consists of the scatten.:r and a finite region
of host medium was modcllcd through an assemhlage of conventionallinite clements. The
solution in the exterior region was represented by wave function e.'l:pansion. Imposing
continuity conditions for displacements and traction forces at the nodal points on B. the
unk nown coellkients associated with the scattered waves in the exterior n.:gion and the
displacements at the boundary nodes were obtained. They were then used to calculate
the field at any point outside B as well as the nodal displacements in the interior region.
The technique has the advantage that the scallerer can be quite arhitrary in shape and in
material properties. Also the multiple scattering by a cluster of scalterers can he studied.
In essence. this numerical technique. which exploits the great Ikxibility of finite clements
in modelling complicated geometries and boundary conditions. relics on wave functions to
capture the far-Ikld behaviour. Research is now underway to exll.:nd this technique to
analyse problems where explicit wave functions are not availablc.

In this paper. we usc this numerical technique to study the scattering ofllexural waves
by a cylindrical scattcrer (or a cluster of scatterers) in an isotropic inlinite clastic plate. The
interior region is modelled by Mindlin type plate bending clements. The exterior region is
repn.:sented by tlexural wave functions. The cross-section of the scatterer can be arbitrary.
but for illustration purposes we only consider circle. triangle and square shape cavities. The
case of multiple scattering by two right drcular cylindrical cavities is also considered. The
plate is excited by time harmonic slow flexural wave that is incident obliquely making an
angh.: j' to the x-axis. (Fig. I). Numerical results arc presented for various normalized
frequencies in the range 0.1-0.9. the normalization factor being Po = rrC1/11 in which 11 is
the plate thickness and C 2 is the shear wave velocity in an infinite clastic medium. Note
that the normalization I~lctor for frequencies is the lowest circular frequency of the simple
thickness shear modes of a plate based on the three dimensional theory.

FORMULATION OF TIlE PROBLEM

(a) Finile clcf11c!If model of i!lfcrior re,qioll
The details of the formulation of Mindlin type plate bending clements have been

discussed by Cook (1981) and Hughes e( a/. (1977), so that there is no need for repeating
them here. Only the relevant details will be given to underscore the disclIssion.
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In Mindlin's theory for flexural vibration of plates, the displacement components,
when referred to Cartesian coordinates, are assumed as

II, = =I/I,(x,y) e- ipr

11,. = =I/I,(x,y) e- 1pr

II: = w(x.y) e- 1pt
• (I)

Thus the displacement at any point is completely defined by the components of the gener­
alized displacement vector {W]-, where

{W} = <wI/I,I/I.')" (2)

in which W is the lateral displacement, 1/1, and 1/1. are rotations in the x: and y: planes,
respectively.

In eqn (I). a steady state time variation of e- 1pr is assumed (p-circular frequency). This
occurs throughout and may be omitted for notational convenience.

The generalized displacement vector {c5]- at a point within an element e is interpolatcd
from the nodal values as

{W} = [N"(x,y)j{qC} (3)

whcre [NC(x,y») contains the interpolation functions. {qC} is the vector of nod.d variables
for element e.

The bending moments {M} and shear force {Q} are related to the generalized strain
components {I:h]- and k.} by the expressions

(4)

(5)

where

{Q} = <Q,Q,,)r

(6)

(7)

(8)

(9)

[

Iv 0]
v I ~v
o 0 -­

2

( 10)

E",..~ [I OJ
[D,) = 2(1 + v) 0 I . (I I)

In the above, E is the Young's modulus, " the thickness. v the Poisson's ratio and ,..~ the
shear correction factor. Notc that we use the Mindlin's value of1t~/12 for the shear correction
factor instead of the conventional Reissner's value of 5/6. The Lagrangian of the system
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can be written as
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where (*) indicates complex conjugate. f Band WB are. respectively, the generalized traction
and displacement vectors on the boundary B. and [P] is the inertia matrix which is given
as

[
"

[P] = p ~

o
h'/I2

o
(13)

in which p is the mass density per unit volume. The governing equations of motion of the
system can be obtained by minimizing the eqn (12) and expressed as

where

[SI = [Kl-p~[Ml

(14)

( 15)

in which [K] and [M] arc. respectively. the global stiffness and mass matrices of the interior
region. {q: is the vector of nodal variables and {R} is the vector of generalized loads which
has non-zero components corresponding to the interface degrees of freedom only. Note
that the boundary B is a fictitious circle of radius R II , which is arbitrary.

I f the vector {q} of nodal variables is separated into two parts. {qll} corresponding to
the nodal variables at the boundary Band {ql} corresponding to the nodal variables
elsewhere in the interior region. eqn (14) can be written as

( 16)

(b) Flexural wave functions for extaior ref/ion (scalleredjidd)
In the exterior region, the total displacement u, whkh consists of the incident wave

field component u(i) and scattered wave field component u('l, C.ln be written, in cylindrical
coordinates system, as

lI, = ;t/J, (r, 0)

Un = ;t/Ju (r, 0)

II, = II'(r, 0). ( 17)

The steady state time factor e·' 'pi is omitted in the foregoing equations and hereafter when
its existence is apparent. The generalized displacement components w, t/J, and t/Ju may be
expressed in terms of three potentials WI, W~ and fl, as given by Mindlin and Dcresiewicz
( 1954).

( l8a)

(18b)

( 18c)
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where the three potentials satisfy

(V~+bDWI =0

(V~+b~PV~=0

(V~ +w~)H= O.

In the foregoing equations

b~,J~ = ~Jri{(R+S)± ../(R-S)~+4J04}

<(TI,(T~>T = (RJri-s-')-I<J~J~>T

we = 2(RJri-S- I )/(I-,')

R = h~/l2, S = D/I\~Gh, Jri = pp~hlD
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(19a)

(19b)

( 19c)

(20a)

(20b)

(20c)

(20d)

where h is the thickness of the plate. v the Poisson's ratio. D the flexural rigidity and G the
shear modulus. The wave number J I is always real. For frequencies p < Po. both the wave
numbers 15 ~ and ware imaginary. The scattered wave field satisfying eqn (19) can be written
as

W, = L {AI"ff,,«),r) cos nO+A~"II,,(Jlr) sin nO}

~V~ = L {BI"K,,(J~r) cos nO+B~"K,,(J2r) sin nO}

(21 a)

(2Ib)

(2Ic)

where the constants II I", lJ I" and C I" corresponds to a symmetric problem and A ~", B2"

and C~" corresponds to an anti-symmetric problem.

(22)

H" is the Hankel function of the first kind and K" the modified Bessel function of the second
kind. The summation goes from zero to infinity through integer values of n. Note that the
eqn (21) represents a wave field that radiates outward from the origin. Substituting eqn
(21) and eqn (18), we get

II' = L {[A 1,,9, +BI,,9~] cos ,,0+[A 2,,91 +B2,,92] sin nO}

"', = L {[A 1"9,, + B In fJ,~ + C,,,y,d cos n(}+ [A 2"9,, + B2,,9,~ - C 2,,9d] sin nO}

"'/I = L {[A ,,,9,1 + BI,,9,2 + C 1,,9d] sin nO+ [-A 2,,9,1 - B2,,9,~ + C 2,,9,J] cos nO}. (23)

Expressions for 9" fh, etc. are presented in the Appendix. Evaluating eqns (23a-c) at each
of the nodes lying on the boundary B, the vector {q\:I} of nodal variables due to scattered
field can be written as

(24)

where {q~I}CYI contains the nodal variables. in cylindrical coordinate system. evaluated at
the nodes on the boundary B. {a} contains the unknown coefficients A I". B I". etc. In writing
eqn (24). the summation of the terms containing the coefficients A I". B I" and C~ is taken
from zero to «NB/2) - I) where NB is the number of nodes on the boundary. The summation
of A~. B~ and C I " goes from one to NR/2. Thus [G] is a square matrix.

The vector {q~)}CY' in eqn (24) can be transformed into Cartesian coordinate system
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(25)

where [n is the transformation matrix.
The next step is to construct the boundary nodal force vector corresponding to the

generalized displacement vector :q~I}. It should be noted here that the components of the
force vector {R~':- corresponding to the displacements 11". t/J t and t/J •. at the boundary Bare
Q" (M''!I - /11,,1:) and (AI,,!: + AI,~/,), respectively. where II (= cos 0) and I: (= sin 0) are
the direction cosines of the normal to the boundary B.

The stress resultants for the displacement field in eqn (23) can be expressed as

Q, = ,,:GII L {[A InQ,1 + B,nQ,:+ C,nQ,d cos nO

+ [A :nQ, 1+ B:nQ,: - C:nQ,JJ sin nO} (26a)

M" = D L {[A InM'1 + BlnM,: +C1nAf,.] cos ,,0

+[A:nM,,+B:nAl,:-C:nM'JJ sin nO} (26b)

M,,, = ~ (l-v)L['·('nM",+B1n,\I,r:+CnM,r.] sin ,,0

+[- A:nM,rl - B:nM,,: +C:nM"J] cos nO. (26c)

Expn:ssions for Q". Q,:. etc. arc given in the Appendix. Evaluating the stress resultants at
each of the nodes lying on the boundary B and multiplying by the tributary area. the
boundary nodal force vector can now be assembled as

(27)

As the number of "s considered in writing eqn (27) is the same as that for eqn (24). the [F]
matrix is of the same size as [eij and square and non-singular. Eliminating {a:- from eqns
(25) and (27). we get

where

[5,] = [l'l[G] 1[n I.

The impedance matrix [51] is square and complex-valued but unsymmetric.

(28a)

(28b)

(c) Incident Il'tIl'e field
The incident slow flexural wave propagating in a direction making an angle y with the

x-axis can be represented by

(29)

For this incident field. the displacements and stress resultants can be derived and the vectors
{q\;l:- and {RW} corresponding to {ql;'j- and {R\:'} can be constructed in a similar manner.

(d) Glohal solution
The continuity conditions of displacements and traction forces at the boundary nodes

arc

qlJ = qlj) +q\:l

RIJ = Rlj) + R~'.

(30a)

(30b)
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Imposing these conditions on eqns (16) and (28), we get

[5 5 5 -15 5]' 1 'Rldl [5]1 II»)BB - BI II IB - ,. (qB i =( B f - J (qB f

and

lIS}

(3Ia)

(31 b)

The displacements of the boundary nodes as well as of the nodes in the interior region are
obtained from eqn (31). Then the eqns (30a) and (25) are used to obtain the unknown
coefficients in the scattered wave field.

NUMERICAL RESULTS AND DISCUSSION

(a) Plale hendin9 eleml!nls
The modelling of the interior region by plate bending elements. which interact with

the infinite medium (exterior region). is of some interest from the finite element point of
view. A number of different plate bending elements have been reported in the finite element
literature. The literature in this area is so vast that no attempt will be made here to review
it. Among the plate bending elements available. those based on Mindlin's plate theory and
sekctivereduced integration techniques are found to be very effective in modelling the thin
as well as thick plate beha viour. Hughes el al. (1977) and Pugh el al. (197S) studied the
performance of quadrilateral plate nending clements in static pronkms. Their performance
in tl1\: conle:l;t ()f free vinration analysis has neen reported ny Hinton and Bicanic (197\).
Almost all the elements studied in thc aforementioned rcl'crences possess at least one
spurious lero-energy mode. It should ne noted here that the performall\;e was ohserved in
prohlems (referred to as "conventional problems" in the sequel) where the plate has a linite
span and simple noundary conditions. The prescription of certain houndary conditions
may supprl'SS the mechanisms formed hy the zero-energy modes. In most applications.
these spurious zcro-energy modes pose no prohlem. hut occasionally they act up (Hughes
cl al.. (977; Hughes and Cohen. 197X) when they are weakly coupled to the boundary
conditions. The "heterosis" element proposed hy Hughes el al. (197X) seems to alleviate
these shortcomings hy having the correct rank and thus possessing no zero-energy mode.
Its performance in dynamic prohlems has not heen reported in the literature.

In this study. we consider an infinite plate. However. only the interior region. which
is linite. is discrt:liLed to gt:l the tinite element model. The size of elements is kept within
a certain limit in order to ensure that the tinite element model transmits the waves ellectively.
For linear quadrilateral elements. the size is limited to ~ of the minimum wave length of the
types of wave being considered. The corresponding "size factor" for quadratic elements is
1. During the experimental stage it was observed that the element aspect ratio (ratio of
clement siLe to its thickness) lay within a range 01'0.2-1.5. In this range. the elements arc
known to behave well in conventional problems (no shear locking. etc.). Only four and
nine node Lagrange elements and a heterosis element were used in the experiments. The
element stiffness was evaluated selectively integrating the bending and shear terms. Results
of extensive numerical experiments indicated that all three clements performed well. The
nine node Lagrange clement and heterosis element exhibited a high level of accuracy and
very often. these results hardly ditfered. The convergence of the four node clement was
somewhat slow compared to the other two elements. but ultimately converged to the correct
results with mesh refinements.

(b) Scattering hy circular cal"ilies
In order to observe the performance of the plate bending clements in the present

context as well as to estahlish the validity of the proposed technique. we first consider the
scattering problem of incident slow flexural waves by a circular cavity in an infinite plate.
the angle of incidence being zero. The mesh used for this problem is shown in Fig. 2.

The displacements along the circumference of the cavity are computed for various
values of (a) the normalized frequency p = plPn and (b) the ratio ii of the radius {/ or the
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Ne : No. of nodes on fhe boundary B

Nr : No. of nodes inferior fo fhe boundory B

Fig. ::. Finill: c1mh:nt rTll:>h.

cavity to the thickness II of the plate. We considered normalized frequcncies fi in the range
0.1....Q.9 and ii from 0.5 to 5.0. The results are found to be in good agreement with the
analytical solution. As an illustration. the comparison of a displacement component for a
normalized frequency of 0.9 and ii of 2.0 is shown in Fig. 3. The results of the nine node
Lagrange clement are not shown on the figure as they arc almost identical to those of the
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heterosis element. The material properties used in this and other subsequent problems are
II ~ 1.0. v ~ 0.3 and p ~ 1.0.

A quantity of general interest in problems involving a cavity is the hoop stress (tan­
gential moment AI,. in the present case) along the circumference of the cavity. However,
the stress or stress resultant evaluated using the finite clement technique at points other
than certain Gauss points will be less accurate. The moments are, therefore, computed at
those Gauss points that correspond to the shear quadrature and located close to the cavity.
These points lie on a circle of radius 1.I08ti.

Figure 4 shows the normalized moments Mr ~ M r/Mo so calculated along with the
analytical results. The normalization factor M 0 in the above is given by M 0 ~

- DI);(rT l - I). The results of the nine node Lagrange element are not shown again as its
plot symbols tended to overlap with those of heterosis clement. It is seen from Figs 3 and
4 that the nine node Lagrange clement and heterosis clement are very accurate in modelling
the l1exural wave scattering phenomenon. The accuracy of the results of the four node
clement is improved upon refining the mesh.

(c) Scattering by arbitrary shaped cOl'ities
Attention is next focussed on the scattering problem of cavities having square and

triangular shapes. The radii of their circumscribing circles are a. The circular cavity con-
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sidered previously represents a streamlined scatterer whereas the square and triangular
cavities have a blunt nature. The case of multiple scattering by a pair of cavities is also
considered where the radii of the cavities are (I and a 2 and their centres are located at a
distance 2ii. It should be mentioned here that these problems pose no exceptional difficulties
to the proposed method. On the other hand. they cannot be solved by analytical means. In
these problems. the absolute values of the tangential moments AIr are evaluated at Gauss
points located close to the circumference of the cavities. (For the square they are on a
square with circumscribing circle of radius 1.0hl. for the triangle these are on a similar
triangle with circumscribing circle of radius 1.0Sa. and for the two circles the results are
around the bigger circle at Gauss points on a concentric circle of radius 1.025(1). The
normalized values IAI rl are then plotted against the polar angle measured at the origin
from the positive x-axis in the counterclockwise direction. Only heterosis elements are used
for triangular and square cavities. In the case of multiple scattering problems. the finite
element model of the interior region tended to be so large that it placed a severe burden on
the storage capacity of the computer. Since the bandwidth of the four node element is about
half of the nine node element. we alleviated the storage problem by using only the four
node elements. Also the results will be presented only for the larger circle in this case.

Figure 5 shows the effect of various (I values on the tangential moment. With increasing
(I more and more terms of eqn (21) need to be considered to achieve convergence and the
fineness of the mesh must be increased accordingly. In this and other subsequent figures.
we included the results of circular cavity to facilitate comparison with the results of other
cavities. It is seen from Fig. 5 that maximum values occur at the least value of II. The higher
order terms in eqn (21) that hecome active as II increases seem to ha Ve the ell'cct of reducing
the maximum value hut. at the same time. producing more ripples. For the circular cavity.
however. the ripples arc conlined to the first quadrant. This is a "shadow" region to the
incoming wave. and the cause of ripples may be partly attributed to the wave that creeps
along the boundary of the cavity and disperses in the shadow region. In Fig. 5b. some
ripples arc observed even in the second quadrant suggesting that the presence of another
cavity nearhy may extend the shadow region. As anticipated. the corner regions in square
and triangular cavities sulkr abrurt increase in monH;nts (!'"ig. 5c. d).

In Fig. 6. we pn.:sent the resul ts for various normalized freq uencies. The value of aand
angle of incidence " arc fixed at 2.0 and () . respectively. The maximum values of the moment
seem to occur for the lowest frequency.

Lastly in Fig. 7, results arc rresented for angles of incidence 0 . 45. 90 . 135' and
180 . The angles of incidence 135 and IHO an: omitted for circular and square cavities as
they an: similar to 45 and 0 , respectively. Furthermore, dill'crent angles of incidence in
the case of a circular cavity merely cause a shifting of the wrves in the plot. [t is seen from
Fig. 6 that the maximum values of the moment for different angles of incidence arc more
or less the same.

CONCLUSION

A hybrid finite clement and wave function exransion has been presented to study the
scattering of slow flexural waves by arbitrary shaped scatterers in an infinite clastic plate.
The scatterer can be either a solid or a cavity. The numerical results presented here agree
well with the available analytical results. The advantage of the method is that the ncar field
region containing all inhomogeneities can have quite arbitrary material properties. Also
the multiple scattering by a cluster of scatterers can be studied without much difliculty. [t
is found that the maximum value of the tangential moment around the cavities occurred at
the lowest frequency and lowest a/Iz ratio. It is also found that the maximum value was not
much affected by the direction of the incident wave.

Three Mindlin tyre plate bending elements. namely. four and nine node Lagrange
clements and a heterosis element have been used to model the flexural wave scattering
phenomenon. Their performance in a similar situation has not been documented previously.
It is found that all three e1emcnts performed well. Thc four node element exhibited slow
convergence characteristics.
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APPENDIX

The terms ,qt. 9,.··. appearing in eqn (23) arc as follows

9, = f1.(b l r)

91 = K.(J'lr)

(AI)

(A2)

(A3)

(A4)



&:attering of flexural wa\t:S by cavities

g" "" -a, ~H.(,j,,),

fI,. = -[~K.«ijr)-tiiK... ,(ij')J.. . ,

The terms Q,\. Q,~. .lId' etc. appearing in eqn (26) are as follows.

- [ 11 "J' ,\ I .M d "'IT, (l-vl-,(1I-l)-r)j 1I.(r)")+(I-,')--f{,,,(,),,)" ,

rII "';-']M,,=(l-vj ,(II-lIK.(,;,,)- K",(,iI')" ,

{l:!Jl 'J :!,ii }M". = - ,,«(/-I)+,ii- K.(,vr)+ r K.,,(,ii,} .
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(AS)

(A6)

(A7)

(AS)

(A9)

(AIO)

(AI I)

(AI2)

(AU)

(AI4)

(AIS)

(AI6)

(A 17)


